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Abstract
Based on the entangled state representation and Feynman’s idea that ‘electron
pairs are bosons, . . . , a bound pair acts as a Bose particle’, we present a
cooper-pair number-phase quantization scheme for the mesoscopic LC circuit
including two coupled Josephson junctions (JJs). Then we use the Heisenberg
equation of motion to obtain the modified current equation and voltage equation
across each JJ, as well as the equation for realizing quantum control. Besides,
we investigate how the phases in two JJs are affected mutually through the
capacitor coupling and the coupled JJs.

PACS numbers: 73.23.−b, 74.50.+r, 85.25.Cp

1. Introduction

Recently, physicists delightedly found that a practical quantum computer might be built by
using some solid-state devices, for instance, taking a Josephson junction (JJ) [1–4] as its
core, which is comprised of two superconductors ‘weakly’ connected by a thin layer of
insulating material [5, 6]. However, any practical quantum computer is composed of many
mesoscopic circuits including, except for the JJs in series and in parallel, the capacitance,
the inductance and electric resistance, etc. So many mesoscopic circuits including JJs are
widely investigated [7–12]. The merits of the type of mesoscopic circuits lie in the following
aspects: (1) they can exhibit strong entanglement owing to the entanglement of the JJ itself or
the coupling between the JJ and the capacitor. Usually, the entanglement is recognized as an
important physical resource in quantum information and many protocols are implemented on
the basis of entangled state, so the circuits including JJs are widely applied in many information
computation and processing. (2) The circuits with JJs can provide us with an artificial two-state
system, which can be considered as a quantum qubit for designing a quantum computer.

* Work supported by the National Natural Science Foundation of China under Grant 10574060 and the Natural
Science Foundation of Liaocheng University under Grant X071049.
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Figure 1. The mesoscopic LC circuit including two coupled Josephson junctions.

(3) Short-time decoherence of a single Josephson charge qubit [13] and many excellent
properties of the single JJ in designs show the qualification for being a good candidate for
quantum computation hardware.

In this paper, we propose the mesoscopic LC circuit including two coupled JJs (see
figure 1). Supposing that at interval time �t → 0 the circuit is excited by an instant impluse
source, then in a later process we shall investigate how the Josephson equations change because
of the capacitor coupling and the coupling between two JJs. For this aim, following Feynman’s
explanation [5] about Cooper pair that ‘a bound pair act as a Bose particle,· · ·’, we present
a bosonic operator Hamiltonian model of the mesoscopic LC circuit including two coupled
JJs, then propose the Cooper-pair number-phase quantization scheme by virtue of the bipartite
entangled state representation [14–16]. Furthermore, in the Heisenberg picture we obtain the
modified Josephson current and voltage equations across the JJs, as well as the elementary
realization of quantum control. The relations to the phase-difference operator ϕ̂j1 and ϕ̂j2 in
the time evolution of the coupled JJs in series are also given.

2. Classical Hamiltonian analysis of the LC circuit including two coupled JJs

Let us begin with analyzing this circuit from the point of view of classical Hamiltonian
dynamics. For the non-dissipative inductance, from the Faraday’s law of electromagnetic
induction we can obtain the voltage drop uLl

across the lth inductance

uLl
= �̇Ll

, l = 1, 2, (1)

where �Ll
is the self-inductance magnetic flux through the lth inductance. For the lth single

JJ, noticing that the current equation and the junction induction-voltage equation are

Ijl
= Icl

sin ϕjl
, (2)

ϕ̇jl
= 2eujl

h̄
, (3)

where 2e is the charge of a Cooper pair and Ejl
is the coupling energy of the lth junction,

Icl
= 2eEjl

/h̄ is the critical electric current of the JJ, the parameter ujl
represents the voltage

drop across the lth JJ and ϕjl
denotes the phase difference between two superconductors of the

lth junction. So when the tunneling happens, the work done across the lth junction is∫ t

0
ujl

Icl
sin ϕjl

dt = Ejl

(
cos ϕjl

− 1
)
. (4)

Considering the direct and strong coupling between the latter two electrodes owing to the
intermediate electrode is thin enough to allow the overlap of the superconducting order
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parameters of the outer layers, the coupling energy between superconductors 1 and 3 is
Ej3 = h̄I13/2e, thus the whole system’s potential energy is

V =
∑
l=1,2

[
1

2Ll

�2
Ll

+ Ejl

(
1 − cos ϕjl

)]
+ Ej3

[
1 − cos

(
ϕj1 + ϕj2

)]
. (5)

On the other hand, taking Ccl
and Cjl

as the coupling capacitance and the junction capacitance
respectively, the charging energy in all the capacitors is

T =
∑
l=1,2

1

2
Ccl

u2
cl

+
1

2
Cjl

u2
jl
, (6)

where T is considered as the kinetic energy, since from equations (1) and (3) one can see that
ujl

and ucl
are related to the generalized velocities ϕ̇jl

and �̇Ll
, respectively. From the simple

analysis of voltage at the nodes of the circuit we see

ucl
= ujl

+ uLl
. (7)

Substituting equations (1), (3) and (7) into equation (6) yields

T =
∑
l=1,2

1

2

(
Ccl

+ Cjl

) (
h̄

2e

)2

ϕ̇2
jl

+
1

2
Ccl

�̇2
Ll

+
h̄

2e
Ccl

ϕ̇jl
�̇Ll

. (8)

Then the Lagrangian function of the system is

L = T − V

=
∑
l=1,2

[
1

2

(
Ccl

+ Cjl

) (
h̄

2e

)2

ϕ̇2
jl

+
1

2
Ccl

�̇2
Ll

+
h̄

2e
Ccl

ϕ̇jl
�̇Ll

− 1

2Ll

�2
Ll

− Ejl

(
1 − cos ϕjl

)] − Ej3

[
1 − cos

(
ϕj1 + ϕj2

)]
. (9)

Owing to the charge neutrality law (or electric current continuity) at nodes of the circuit,
ujl

Cjl
− 2nle = −ucl

Ccl
, then from equations (1), (3) and (7), we have

2nle = ujl
Cjl

+ ucl
Ccl

= (
Cjl

+ Ccl

) h̄

2e
ϕ̇jl

+ Ccl
�̇Ll

, (10)

where nl is the excess number of Cooper-pairs on the island. Using equations (1), (3), (9) and
(10) we calculate the generalized momentum, respectively, conjugated to ϕjl

and �Ll

pjl
≡ ∂L

∂ϕ̇jl

= h̄

2e

[(
Cjl

+ Ccl

) h̄

2e
ϕ̇jl

+ Ccl
�̇Ll

]
= nlh̄, (11)

pLl
≡ ∂L

∂�̇Ll

= Ccl
�̇Ll

+
h̄

2e
Ccl

ϕ̇jl
. (12)

Note that the generalized momentum pjl
is proportional to the excess number nl of Cooper-

pairs, which implies the possibility of number-phase quantization, as we will do in the next
section. In terms of Legendre transformation and equations (11) and (12) we can obtain the
classical Hamiltonian

H =
∑
l=1,2

(
pjl

ϕ̇jl
+ pLl

�̇Ll

) − L ≡ Hj + HL + Hint, (13)

where Hj is the Hamiltonian of two coupled JJs,

Hj =
∑
l=1,2

[
E(j)

cl
n2

l + Ejl

(
1 − cos ϕjl

)]
+ Ej3

[
1 − cos

(
ϕj1 + ϕj2

)]
(14)

3
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and the Hamiltonian HL is equivalent to the superposition of two standard harmonic oscillators

HL =
∑
l=1,2

p2
Ll

2ml

+
1

2Ll

�2
Ll

, (15)

as well as Hint is the coupling term

Hint =
∑
l=1,2

ζlnlpLl
, (16)

where

E(j)
cl

= 2e2

Cjl

,
1

ml

= Cjl
+ Ccl

Cjl
Ccl

, ζl = − 2e

Cjl

. (17)

3. The bosonic operator form of the classical Hamiltonian in (13)

Owing to the fact that the single LC circuit can be equivalent to a standard harmonic oscillator,
as is mentioned above, we can obtain the quantum-mechanical Hamiltonian ĤL by replacing
pLl

,�Ll
by the corresponding operators, with

[
�̂Ll

, p̂Ll

] = ih̄. Thus the operator Hamiltonian
ĤL can be written in the standard bosonic form

ĤL =
∑
l=1,2

h̄ωl

(
ĉ
†
l ĉl + 1/2

)
, (18)

where ωl =
√

Cjl
+Ccl

LlCjl
Ccl

is the characteristic frequency of the harmonic oscillator, and

ĉ
†
l = 1√

2mlh̄ωl

(
mlωl�̂Ll

− ip̂Ll

)
, ĉl = 1√

2mlh̄ωl

(
mlωl�̂Ll

+ ip̂Ll

)
(19)

are the bosonic operators, which satisfy the basic commutative relation
[
ĉl , ĉ

†
l

] = 1.

On the other hand, according to Feynman’s view [5] that ‘a bound pair acts as a Bose
particle’, we are naturally led to provide the bosonic operator model to quantize the classical
Hamiltonian in (14). As we mentioned in the above section that the excess charge 2en

l
should

be quantized, so we let

nl → n̂l ≡ â
†
l âl − b̂

†
l b̂l , (20)

be a Cooper-pair number operator in each box, â
†
l and b̂

†
l are Bose creation operators. To

embody the number-phase quantization scheme we introduce the entangled state |η〉l [14–16]

|η〉l = exp

[
−1

2
|ηl|2 + ηlâ

†
l − η∗

l b̂
†
l + â

†
l b̂

†
l

]
|00〉l , (21)

where ηl = |ηl| eiϕl , |00〉l is the two-mode vacuum state. The |η〉l state is constructed based
on the idea of the quantum entanglement of Einstein, Podolsky and Rosen [17]. Using[
âl , â

†
l

] = [
b̂l , b̂

†
l

] = 1, we see that |η〉l obeys the eigenvector equations(
âl − b̂

†
l

)|η〉l = ηl|η〉l ,
(
b̂l − â

†
l

)|η〉l = −η∗|η〉l . (22)

The set of |η〉l makes up a complete quantum-mechanical representation∫
d2ηl

π
|η〉ll〈η| = 1. (23)

We can construct the bosonic phase operator for JJ [14]

eiϕ̂l =
√√√√ âl − b̂

†
l

â
†
l − b̂l

, e−iϕ̂l =
√√√√ â

†
l − b̂l

âl − b̂
†
l

, cos ϕ̂l = 1

2
(eiϕ̂l + e−iϕ̂l ), (24)
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because in the |η〉l representation, eiϕ̂l behaves as a phase

eiϕ̂l |η〉l = eiϕl |η〉l , e−iϕ̂l |η〉l = e−iϕl |η〉l . (25)

Note
[
â
†
l − b̂l , âl − b̂

†
l

] = 0, so they can reside in the same√ . It then follows ϕ̂l =
1
2i ln âl−b̂

†
l

â
†
l −b̂l

, ϕ̂l |η〉l = ϕl|η〉l . From (22) we can derive

n̂l|η〉l ≡ (
â
†
l âl − b̂

†
l b̂l

)|η〉l
= [

â
†
l

(
ηl + b̂

†
l

) − b̂
†
l

(
a
†
l − η∗

l

)]|η〉l = |ηl|
(
â
†
l eiϕl + b̂

†
l e−iϕl

)|η〉l
= −i

∂

∂ϕl

|η〉l . (26)

so

[ϕ̂l, n̂l]|η〉l =
[
ϕl,−i

∂

∂ϕl

]
|η〉l = i|η〉l → [ϕ̂l, n̂l] = i, (27)

which embodies number-phase quantization. Furthermore, using equations (25) and (26) we
also derive the following commutative relations:

[n̂l , cos ϕ̂l] = i sin ϕ̂l, [n̂l, sin ϕ̂l] = −i cos ϕ̂l . (28)

As a consequence of equations (25)–(27), the classical Hamiltonian in equation (14) is
quantized as

Ĥ j =
∑
l=1,2

[
E(j)

cl
n̂2

l + Ejl

(
1 − cos ϕ̂jl

)]
+ Ej3

[
1 − cos

(
ϕ̂j1 + ϕ̂j2

)]
(29)

and the coupling term in equation (16) is quantized as

Ĥ int =
∑
l=1,2

iζl

√
mlh̄ωl/2n̂l

(
ĉ
†
l − ĉl

)
. (30)

4. Modified operator Josephson equations and quantum control

Using the Heisenberg equation of motion and the commutative relations (27) and (28) we can
derive the equation of number operator in each JJ, i.e.,

d

dt
n̂l = 1

ih̄
[n̂l , Ĥ j ] = −Ejl

h̄
sin ϕ̂jl

− Ej3

h̄
sin

(
ϕ̂j1 + ϕ̂j2

)
, l = 1, 2 (31)

thus equation (31) is equivalent to the Josephson current equation

− d

dt
〈Q̂l〉 = 2eEjl

h̄

〈
sin ϕ̂jl

〉
+

2eEj3

h̄

〈
sin

(
ϕ̂j1 + ϕ̂j2

)〉 ≡ Il, Q̂l = 2e
(
â
†
l âl − b̂

†
l b̂l

)
, (32)

which possess the coupling term and obviously differs from the current equation of the single
JJ owing to the two JJs being coupled strongly. Similarly, the phase-difference operator
ϕ̂jl

, conjugated to the Cooper-pair number-difference operator n̂l , evolves in the Heisenberg
picture

dϕ̂jl

dt
= 1

ih̄

[
ϕ̂jl

, Ĥ j + Ĥ int
]

= 1

ih̄
E(j)

cl

[
ϕ̂jl

, n̂2
l

]
+

1

ih̄
iζl

√
mlh̄ωl/2

(
ĉ
†
l − ĉl

)
[ϕ̂jl

, n̂l]

= 1

h̄

(
2E(j)

cl
n̂l + ζlp̂Ll

)
, (33)

5
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where we have used equations (19) and (27), and from which we see that the voltage equation
is affected by the capacitor coupling as shown 1

ml
= Cjl

+Ccl

Cjl
Ccl

in equation (17). Substituting
equations (12) and (17) into equation (33) leads to

dϕ̂jl

dt
= 2e

h̄
(
Cjl

+ Ccl

)
(

2en̂l − Ccl

d�̂Ll

dt

)
, (34)

from which we see that the operator voltage equation about the junction is modified due to
the capacitor coupling with the inductance. In fact this point can be further confirmed by
deducing the Faraday operator equation from the Heisenberg equation

ûLl
= d�̂Ll

dt
= 1

ih̄

[
�̂Ll

, Ĥ j + Ĥ int
] = 1

ml

p̂Ll
+ ζln̂l . (35)

Substituting equations (12) and (17) into equation (35) leads to

ûLl
= d�̂Ll

dt
= 2e

Ccl

n̂l − h̄

2e

(
1 +

Cjl

Ccl

)
dϕ̂jl

dt
. (36)

This equation is the same as equation (34), which implies that
d�̂Ll

dt
and

dϕ̂jl

dt
are nearly

associated. Or we say that the Josephson equation is modified accompanying with the
modification of Faraday equation about the inductance. Combining (31) and (34) we have

d2ϕ̂jl

dt2
= −2e

h̄
(
Cjl

+ Ccl

)
{

2e

h̄

[
Ejl

sin ϕ̂jl
+ Ej3 sin

(
ϕ̂j1 + ϕ̂j2

)]
+ Ccl

d2�̂Ll

dt2

}
. (37)

Owing to the contribution of the lth inductance is equivalent to the additional presence of a
controllable gate voltage bias, equation (37) denotes that the variation of the voltage across
the lth JJ is realized by controlling the gate voltage bias across the lth inductance and the gate
capacitance Ccl

.

5. Relations between the phase difference ϕ̂j1 and ϕ̂j2

In the section we investigate the relations to the phase difference ϕ̂j1 and ϕ̂j2 involved in the
time evolution of the single JJ when extra energy is applied to the junction. Supposing that an
extra energy (say, light radiation) is applied to the first JJ, by comparing equation (33) with
(3) we can see that the effective voltage drop across the first JJ is

Ûj1 = 1

2e

(
2E(j)

c1
n̂1 + ζ1p̂L1

)
. (38)

Then in the interaction picture we can take the corresponding Hamiltonian as the following
form,

H′
1 = 1

h̄

(
2E(j)

c1
n̂1 + ζ1p̂L1

)[
Ej1 sin ϕ̂jl

+ Ej3 sin
(
ϕ̂j1 + ϕ̂j2

)]
, (39)

which is the work done by the Josephson current through the first JJ in unit time interval in
fact. According to the Heisenberg equation of motion in this picture, we derive

d

dt
sin ϕ̂j1 = 1

ih̄

[
sin ϕ̂j1 ,H′

1

] = 2E
(j)
c1

h̄2

[
Ej1 sin ϕ̂j1 + Ej3 sin

(
ϕ̂j1 + ϕ̂j2

)]
cos ϕ̂j1 (40)

and

d

dt
cos ϕ̂j1 = 1

ih̄

[
cos ϕ̂j1 ,H′

1

] = −2E
(j)
c1

h̄2

[
Ej1 sin ϕ̂j1 + Ej3 sin

(
ϕ̂j1 + ϕ̂j2

)]
sin ϕ̂j1 . (41)

6
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It then follows that

d

dt
tan

ϕ̂j1

2
= d

dt

(
1 − cos ϕ̂j1

sin ϕ̂j1

)

= −λ1Ej3 sin ϕ̂j2 tan2 ϕ̂j1

2
+ 2λ1

(
Ej1 + Ej3 cos ϕ̂j2

)
tan

ϕ̂j1

2
+ λ1Ej3 sin ϕ̂j2 , (42)

where the parameter λ1 = E
(j)
c1

h̄2 and equation (42) shows that the variation of ϕ̂j1 with the time
t is affected by the phase ϕ̂j2 . The result is caused by the existence of the capacitor coupling
and the coupling between two JJs. For the second JJ, in the interaction picture we have

d

dt
sin ϕ̂j2 = 1

ih̄

[
sin ϕ̂j2 ,H′

1

] = 0, (43)

which shows the phase difference ϕ̂j2 does not change with the time t when an extra energy
is only applied to the first JJ. So by a simple calculation we can derive the solutions of the
equation (42) which obey the following relation,

2C tan2 ϕ̂j1

2
+ B tan

ϕ̂j1

2
+ A tanh

A

2
t −

(
2C tan

ϕ̂j1(0)

2
+ B

)
tan

ϕ̂j1(0)

2
= 0, (44)

where ϕ̂j1(0) is the initial phase value and the parameters are

A = 2
√

E2
j1

+ E2
j3

+ 2Ej1Ej3 cos ϕ̂j2 , (45)

B = 2
(
Ej1 + Ej3 cos ϕ̂j2

)
, (46)

C = −Ej3 sin ϕ̂j2 . (47)

Similarly, when an extra energy is only applied to the second JJ,using equations (32) and (38)
we can take the following Hamiltonian,

H′
2 = 1

h̄

[
2E(j)

c2
n̂2 + ζ2p̂L2

][
Ej2 sin ϕ̂j2 + Ej3 sin

(
ϕ̂j1 + ϕ̂j2

)]
, (48)

and we can also obtain the time evolvement of ϕ̂j2 , i.e.,

d

dt
tan

ϕ̂j2

2
= −λ2Ej3 sin ϕ̂j1 tan2 ϕ̂j2

2
+ 2λ2

(
Ej2 + Ej3 cos ϕ̂j1

)
tan

ϕ̂j2

2
+ λ2Ej3 sin ϕ̂j1 , (49)

where λ2 = E
(j)
c2

h̄2 and equation (49) also shows how the phase ϕ̂j2 in the second junction is
affected by the phase ϕ̂j1 . Owing to the equation (49) about ϕ̂j2 being similar to equation (42)
in form and the phase ϕ̂j1 is not affected by the extra energy applied to the second JJ, then its
solution has the similar expression in equation (44).

On the other hand, due to the coupling capacitance Ccl
, the inductance and JJ should be

considered in their totality. So for the inductance, though it is not directly radiated by light,
we can still obtain the induction–voltage operator equation

ûLl
= d

dt
�̂Ll

= 1

ih̄

[
�Ll

,H′
l

] = ζl

h̄

[
Ejl

sin ϕ̂jl
+ Ej3 sin

(
ϕ̂j1 + ϕ̂j2

)]
, l = 1, 2 (50)

which shows that the phase ϕ̂jl
affects induction–voltage ûLl

across the lth inductance due to
the existence of the coupling capacitor and the coupled JJs.
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6. Conclusions

In summary, by virtue of the Hamilton dynamic approach we have obtained the classical
Hamiltonian for the mesoscopic system composed of two LC circuits and two coupled JJs.
The entangled state representation is used to propose Cooper-pair number-phase quantization
and obtain the boson operator Hamiltonian for the whole system. Using the Heisenberg
equation the operator Josephson equations are modified owing to the existence of the capacitor
coupling and the coupled JJs, and we also show how to realize the variation of the voltage
across the JJ by controlling the inductance and the capacitance. Besides, we have obtained
the relations between the phase-difference ϕ̂j1 and ϕ̂j2 when one of the two JJs is affected by
extra energy. Owing to the JJ being considered as a promising physical realization of solid
state qubits, which are promising candidates for making processors of quantum computers,
the above results may be useful in manufacturing quantum controlled devices and quantum
computer as reference in theory.
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